
In early 2014, a close friend begged me for
help disinfecting his Mac. When I plopped

myself in front of his screen, I saw obvious
signs of a rampant adware infection: !agrant

browser pop-ups, as well as a hijacked home page. Even
worse, resetting his browser didn’t work; it reverted
to its infected state upon each reboot, suggesting the
presence of a persistent component buried somewhere
deep within the system.

At the time, I was an experienced Windows malware analyst just begin-
ning my foray into the world of macOS. Naively, I thought I could download
a tool capable of enumerating all persistent software installed on the system
to reveal the malicious component. Well-known security tools, such as
Microsoft’s AutoRuns,1 provided such a capability for Windows systems, but
I soon discovered nothing similar existed for Macs.

10
P E R S I S T E N C E E N U M E R A T O R

234!!!Chapter 10

I returned home and spent the next few days putting together a Python
script that, while embarrassingly ugly, was capable of enumerating several
types of persistent software. Running the script revealed an unrecognized
launch agent on my friend’s computer that turned out to be the core persis-
tent component of the adware. Once I removed it, his Mac was as good as new.

Realizing that my script could bene"t other Mac users, I cleaned it
up and released it under the moniker KnockKnock.2 (Why KnockKnock?
Because it tells you who’s there!) Today, KnockKnock has evolved greatly
from its beginnings as a humble command line script. Now distributed as a
native macOS application, it’s capable of detecting a myriad of persistently
installed items on any macOS system. Coupled with an intuitive user inter-
face (UI), integration with VirusTotal, and the ability to export its "ndings
for ingestion into security information and event management (SIEM), it’s
the "rst tool I run on any Mac that I suspect is infected.

In this chapter, I’ll walk through KnockKnock’s design and implemen-
tation to give you an in-depth look at the tool and expand your understand-
ing of the persistence methods that Mac malware often does (or could)
abuse. In the process, we’ll go beyond the detection mechanism discussed
in Chapter#5, which focused solely upon the Background Task Management
database, to look at other ways of persisting on macOS, including browser
extensions and dynamic library hijacks. You can "nd the complete source
code on Objective-See’s GitHub page in the KnockKnock repository at
https://github.com/Objective-see/KnockKnock.

Tool Design
KnockKnock is a standard UI-based application (as shown in Figure#10-1),
but users can also execute it in the terminal as a command line tool.

Figure 10-1: KnockKnock’s user interface

https://github.com/Objective-see/KnockKnock

Persistence Enumerator!!!235

As this isn’t a book about writing UIs (thank goodness!), I won’t delve
into the code related to KnockKnock’s UI. Instead, I focus mainly on its
core components, such as its many plug-ins responsible for querying various
aspects of the operating system to enumerate persistently installed items.

Command Line Options
The code for any Objective-C program starts at the standard main function,
and KnockKnock is no exception. In its main function, KnockKnock begins
by checking its program arguments to determine whether it should display
its usage information or perform a command line scan (Listing 10-1).

int main(int argc, const char* argv[]) {
 ...
 if((YES == [NSProcessInfo.processInfo.arguments containsObject:@"-h"]) ||
 (YES == [NSProcessInfo.processInfo.arguments containsObject:@"-help"])) {
 usage();
 goto bail;
 }

 if(YES == [NSProcessInfo.processInfo.arguments containsObject:@"-whosthere"]) {
 ...
 cmdlineScan();
 }
 ...
}

Listing 10-1: Parsing command line options

You might be familiar with accessing a program’s command line argu-
ments via the main function’s argv. Objective-C supports this approach, but
we can also access the arguments via the arguments array of the processInfo
property in the NSProcessInfo class. This technique has several advantages,
most notably that it converts the arguments into Objective-C objects. This
means, for example, that we can use the containsObject: method to easily
determine whether the user has speci"ed a certain command line argument
regardless of the order of the arguments.

To determine whether to run a command line scan, KnockKnock
checks if the user speci"ed the -whosthere command line option. If so, it
invokes its cmdlineScan function to perform a scan of the system, printing out
information about persistently installed items directly to the terminal.

Plug-ins
Because malware can persist on macOS in many ways and researchers dis-
cover new methods from time to time, KnockKnock’s design relies on the
concept of what I’ll refer to as plug-ins. Each plug-in corresponds to one type
of persistence and implements the logic to enumerate items of that persis-
tence type. The plug-ins then call into other parts of KnockKnock to per-
form actions such as displaying each item in the UI. This modular approach
provides a simple and ef"cient way to add support for new persistence
techniques. For example, after the researcher Csaba Fitzl published the blog

236!!!Chapter 10

post “Beyond the Good Ol’ LaunchAgents -32- Dock Tile Plugins,” which
detailed a new persistence strategy involving macOS Dock plug-ins,3 I added
a corresponding detection to KnockKnock via a new plug-in within the hour.

Each of KnockKnock’s plug-ins inherits from a custom plug-in base
class named PluginBase, which declares properties common to all plug-ins,
as well as base methods. Found in PluginBase.h, it includes plug-in metadata,
such as a name and a description, and arrays that the plug-in populates as it
encounters persisting items (Listing 10-2).

@interface PluginBase : NSObject
 @property(retain, nonatomic)NSString* name;
 @property(retain, nonatomic)NSString* icon;
 @property(retain, nonatomic)NSString* description;

 @property(retain, nonatomic)NSMutableArray* allItems;
 @property(retain, nonatomic)NSMutableArray* flaggedItems;
 @property(retain, nonatomic)NSMutableArray* unknownItems;

 @property(copy, nonatomic) void (^callback)(ItemBase*);

@end

Listing 10-2: The base plug-in class’s properties

The class also declares various base methods (Listing 10-3).

-(void)scan;
-(void)reset;
-(void)processItem:(ItemBase*)item;

Listing 10-3: The base plug-in class’s methods

Each plug-in must implement the scan method with logic to enumerate
one type of persistent item. For example, the Background Task Management
plug-in will parse the Background Task Management database to extract
persistent items managed by the Background Task Management subsystem,
while the Browser Extension plug-in will enumerate installed browsers and,
for each, extract any installed browser extensions. If researchers uncover a
new persistence mechanism, we can trivially add a new plug-in with a scan
method capable of enumerating items that persist in this new way.

The base class’s scan method throws an exception if called directly
(Listing 10-4).

@implementation PluginBase
...
-(void)scan {
 @throw [NSException exceptionWithName:kExceptName
 reason:[NSString stringWithFormat:kErrFormat, NSStringFromSelector(_cmd),
 [self class]] userInfo:nil];
}
@end

Listing 10-4: The base scan method will throw an exception if called.

Persistence Enumerator!!!237

This design allows KnockKnock to easily invoke each plug-in’s scan
method without having to know anything about how each plug-in actually
enumerates persistent items of its speci"c type. The class provides base
implementations for the other two methods, reset and processItem:, though
plug-ins can override them if needed. (Otherwise, the plug-in will just call
the base class’s implementation.)

Both methods affect the application’s UI. For example, when perform-
ing a UI scan, the reset method handles situations in which a user stops
and then restarts a scan, while the processItem: method updates the UI
as plug-ins uncover persistent items. During a command line scan, the
 processItem: method will still keep track of detected items and print each
one to the terminal once the scan completes (Listing 10-5).

-(void)processItem:(ItemBase*)item {
 ...
 @synchronized(self.allItems) {
 [self.allItems addObject:item];
 }
}

Listing 10-5: Updating a global list of persistent items

KnockKnock declares a static list of all plug-ins by their class name.
Later, the code iterates over this list, instantiating each plug-in (Listing 10-6).

static NSString* const SUPPORTED_PLUGINS[] = {@"AuthorizationPlugins",
@"BrowserExtensions", @"BTM", @"CronJobs", @"DirectoryServicesPlugins",
@"DockTiles", @"EventRules", @"Extensions", @"Kexts", @"LaunchItems",
@"DylibInserts", @"DylibProxies", @"LoginItems", @"LogInOutHooks",
@"PeriodicScripts", @"QuicklookPlugins", @"SpotlightImporters",
@"StartupScripts", @"SystemExtensions"};

PluginBase* pluginObj = nil;

for(NSUInteger i = 0; i < sizeof(SUPPORTED_PLUGINS)/sizeof(SUPPORTED_PLUGINS[0]); i++) {
 pluginObj = [[NSClassFromString(SUPPORTED_PLUGINS[i]) alloc] init]; 1
 ...
}

Listing 10-6: Initializing each plug-in by name

For each plug-in class name, KnockKnock invokes the NSClassFromString
API, which obtains a plug-in class based on the given name.4 Then it invokes
the class’s alloc method to allocate an instance of the class (in other
words, to create an object). Next, it invokes the newly created object’s init
method to allow the plug-in object to perform any initializations 1. We’ll
consider some initialization examples shortly. Although not shown here,
KnockKnock will then invoke each of the plug-in’s scan methods.

238!!!Chapter 10

Persistent Item Types
KnockKnock assigns one of three types to persistent items: "le, command,
or browser extension. Most persisted items are executable "les, such as
scripts or Mach-O binaries. However, as in the case of cron jobs, malware
sometimes persists as a command; other times, it persists as a bundle of
"les and resources in the form of a browser extension. It’s important for
KnockKnock to correctly classify items, as each type has unique charac-
teristics. For example, a persistent "le might have extractable code signing
information to help us classify it. We can also hash such "les to check for
known malware.

The three item types are subclasses of a custom ItemBase class, shown in
Listing 10-7.

@interface ItemBase : NSObject
 @property(nonatomic, retain)PluginBase* plugin;

 @property BOOL isTrusted;
 @property(retain, nonatomic)NSString* name;
 @property(retain, nonatomic)NSString* path;
 @property(nonatomic, retain)NSDictionary* attributes;

 -(id)initWithParams:(NSDictionary*)params;
 -(NSString*)pathForFinder;
 -(NSString*)toJSON;
@end

Listing 10-7: The interface for the ItemBase class

This base class declares various properties, such as the plug-in that
discovered the item, the item’s name, and its path. Not all item types set
every property. For example, commands don’t have paths, whereas "les and
extensions do. The ItemBase class also implements base methods to initialize
an item, return its path to show it in the Finder app, and convert it to JSON.
Although objects that inherit from this base class can reimplement each
method if they need to, the base class’s implementation may suf"ce.

Once a plug-in’s scan method completes, it stores any discovered items
in a plug-in property called allItems. In a command line scan, KnockKnock
converts each persistent item to JSON and appends it to a string that it
prints out (Listing 10-8).

NSMutableString* output = [NSMutableString string];
...
for(NSUInteger i = 0; i < sizeof(SUPPORTED_PLUGINS)/sizeof(SUPPORTED_PLUGINS[0]); i++) {
 ...
 [plugin scan];

 for(ItemBase* item in plugin.allItems) {
 ...

Persistence Enumerator!!!239

 [output appendFormat:@"{%@},", [item toJSON]];
 }
 ...
}

Listing 10-8: Converting persistent items to JSON

Each item type implements its own logic to convert the information col-
lected about a persistent item to JSON. Let’s take a look at the implementa-
tion of the toJSON method for items whose type is File (Listing 10-9).

@implementation File
-(NSString*)toJSON {
 NSData* jsonData = nil;

 jsonData =
 [NSJSONSerialization dataWithJSONObject:self.signingInfo options:kNilOptions error:NULL]; 1

 NSString* fileSigs =
 [[NSString alloc] initWithData:jsonData encoding:NSUTF8StringEncoding];

 jsonData =
 [NSJSONSerialization dataWithJSONObject:self.hashes options:kNilOptions error:NULL]; 2

 NSString* fileHashes = [[NSString alloc] initWithData:jsonData encoding:
 NSUTF8StringEncoding];
 ...
}

Listing 10-9: Converting File object properties to JSON

First, the code makes use of the NSJSONSerialization class’s dataWithJSON
Object:options:error: method to convert various dictionaries into JSON.
These dictionaries include the item’s code signing information 1 and
hashes#2. The method also converts numeric values from VirusTotal scan
results (Listing 10-10).

NSString* vtDetectionRatio = [NSString stringWithFormat:@"%lu/%lu",
(unsigned long)[self.vtInfo[VT_RESULTS_POSITIVES] unsignedIntegerValue],
(unsigned long)[self.vtInfo[VT_RESULTS_TOTAL] unsignedIntegerValue]];

Listing 10-10: Computing a detection ratio based on scan results from VirusTotal

Technically, KnockKnock itself doesn’t include logic to detect malicious
code; it merely enumerates persistently installed items. This is by design,
as it allows KnockKnock to detect new persistent malware even with no
direct a priori knowledge of it. However, KnockKnock’s integration with
VirusTotal allows it to !ag already known malware by submitting a POST
request with a hash of each persistent item to a VirusTotal query API.
This API returns basic detection information, such as how many antivirus
engines scanned the items and how many of those engines !agged it as
malicious. KnockKnock converts this data into a string ratio of the form

240!!!Chapter 10

positive detections/antivirus engines and then displays this result in the UI or
command line output.5

The toJSON method "nishes by building a single string object that com-
bines the converted dictionaries, formatted numerical values, and all other
properties of the item object (Listing 10-11).

NSString* json = [NSString stringWithFormat:@"\"name\": \"%@\", \"path\":
\"%@\", \"plist\": \"%@\", \"hashes\": %@, \"signature(s)\": %@, \"VT
detection\": \"%@\"", self.name, self.path, filePlist, fileHashes,
fileSigs, vtDetectionRatio];

Listing 10-11: Building a JSON-ified string

It returns this string to the caller to print out. For example, on a system
infected with the persistent DazzleSpy malware, KnockKnock would display
the following JSON in the terminal:

% KnockKnock.app/Contents/MacOS/KnockKnock -whosthere -pretty
{
 "path" : "\/Users\/User\/.local\/softwareupdate",
 "hashes" : {
 "md5" : "9DC9D317A9B63599BBC1CEBA6437226E",
 "sha1" : "EE0678E58868EBD6603CC2E06A134680D2012C1B"
 },
 "VT detection" : "35\/76",
 "name" : "softwareupdate",
 "plist" : "\/Library\/LaunchDaemons\/com.apple.softwareupdate.plist",
 "signature(s)" : {
 "signatureStatus" : -67062
 }
}

The output shows several red !ags pointing to the fact that this item is
likely malicious. For example, it’s running from a hidden directory (.local),
and while it claims to be an Apple software updater, its signature status
is -67062, which maps to the errSecCSUnsigned constant. What conclusively
identi"es this item as malware, though, is the VirusTotal detection ratio,
which shows that roughly half of the antivirus engines on the site !agged it
as#malicious.

Exploring the Plug-ins
KnockKnock has approximately 20 plug-ins to detect a myriad of persistent
items, including items stored in Background Task Management, browser
extensions, cron jobs, dynamic library inserts and proxies, kernel exten-
sions, launch items, login items, Spotlight importers, system extensions, and
many more. Although I won’t cover every plug-in here, I’ll dive into a few of
them and provide examples of the malware they can detect.

Persistence Enumerator!!!241

Background Task Management
In Chapter#5, we explored the undocumented Background Task Manage-
ment subsystem, which macOS leverages to govern and track persistent
items such as launch agents, daemons, and login items. Through reverse
engineering, I showed you how to deserialize the items managed by the
subsystem, which could include persistently installed malware. We then
created an open source library that I dubbed DumpBTM, which is available on
GitHub (https://github.com/objective-see/DumpBTM). To enumerate persistently
installed launch and login items, KnockKnock leverages this library.

N O T E In Xcode, you can link in a library under your project’s Build Phases tab. There,
expand Link Binary With Libraries, click +, and then browse to the library.

After linking in the DumpBTM library, KnockKnock’s Background
Task Management plug-in can directly invoke its exported APIs, such as
its parseBTM function. The function takes a path to a Background Task
Management "le (or nil, to default to the system’s "le) and returns a dic-
tionary containing deserialized metadata about each persistent item man-
aged by Background Task Management. Listing 10-12 shows a snippet of the
code in the plug-in’s scan method.

#import "dumpBTM.h"

-(void)scan {
 ...
 if(@available(macOS 13, *)) {
 NSDictionary* contents = parseBTM(nil);
 ...
 }
}

Listing 10-12: Calling into the DumpBTM library

This code makes use of the @available Objective-C keyword to ensure
that the plug-in executes only on versions 13 and newer of macOS (as the
Background Task Management subsystem doesn’t exist on earlier versions).
KnockKnock then iterates over the metadata for each persistent item
returned by the DumpBTM library’s parseBTM function and, for each, instanti-
ates a File item object. It does this by invoking the File class’s initWithParams:
method, which accepts a dictionary of values for the object, including a
path and, for launch items, the property list.

Note that the code explicitly checks for a property list, as some persistent
items in the Background Task Management database, such as login items,
won’t contain one (Listing 10-13). This is an important check, as inserting a
nonexistent (nil) item into a dictionary will cause your program to crash.

NSMutableDictionary* parameters = [NSMutableDictionary dictionary];

parameters[KEY_RESULT_PATH] = item[KEY_BTM_ITEM_EXE_PATH];

https://github.com/objective-see/DumpBTM

242!!!Chapter 10

if(nil != item[KEY_BTM_ITEM_PLIST_PATH]) {
 parameters[KEY_RESULT_PLIST] = item[KEY_BTM_ITEM_PLIST_PATH];
}

File* fileObj = [[File alloc] initWithParams:parameters];

Listing 10-13: Creating a dictionary of parameters to initialize a File object

With an initialized File object in hand, KnockKnock’s Background Task
Management plug-in can now invoke the base plug-in class’s processItem:
method to trigger a refresh of the UI or, in a command line scan, add the
item to the list of items persistently installed on the system.

Using the DumpBTM library, KnockKnock can easily enumerate all
persistent items managed by the subsystem. In the following output, you
can see the tool displaying details of the cyber-espionage implant WindTail,
which persists an app named Final_Presentation.app as a login item:

% KnockKnock.app/Contents/MacOS/KnockKnock -whosthere -pretty
...
"Background Managed Tasks" : [
 {
 "path" : "\/Users\/User\/Library\/Final_Presentation.app\/Contents\/MacOS\/usrnode",
 "hashes" : {
 "md5" : "C68A856EC8F4529147CE9FD3A77D7865",
 "sha1" : "758F10BD7C69BD2C0B38FD7D523A816DB4ADDD90"
 },
 "VT detection" : "41\/75",
 "name" : "usrnode",
 "plist" : "n\/a",
 "signature(s)" : {
 "signatureStatus" : -2147409652
 }
 }
]

Many antivirus engines on VirusTotal now !ag the malware, and a
check of its signature returns -2147409652, which maps to the “certi"cate
revoked” constant, CSSMERR_TP_CERT_REVOKED. However, KnockKnock would
have shown the presence of the persistent item even before the antivirus
engines on VirusTotal developed signatures for it.

Unfortunately, no external library can enumerate many of KnockKnock’s
other classes of persistence, so we’ll have to write more code ourselves. One
example is the browser extension plug-in, which we’ll look at now.

Browser Extension
Most macOS adware installs a malicious browser extension to hijack search
results, display ads, or even intercept browser traf"c. Common examples of
such adware include Genieo, Yontoo, and Shlayer.

Because no macOS APIs can enumerate installed browser extensions,
KnockKnock must do so itself. Worse, as each browser manages its extensions

Persistence Enumerator!!!243

in its own way, KnockKnock must implement speci"c enumeration code for
each. Currently, the tool supports extension enumeration for Safari, Chrome,
Firefox, and Opera browsers. In this section, we’ll cover the code speci"c
to#Safari.

To list the installed browsers, KnockKnock uses relatively unknown
Launch Services APIs (Listing 10-14).

-(NSArray*)getInstalledBrowsers {
 NSMutableArray* browsers = [NSMutableArray array];
 1 CFArrayRef browserIDs = LSCopyAllHandlersForURLScheme(CFSTR("https"));

 for(NSString* browserID in (__bridge NSArray *)browserIDs) {
 CFURLRef browserURL = NULL;
 2 LSFindApplicationForInfo(kLSUnknownCreator,
 (__bridge CFStringRef)(browserID), NULL, NULL, &browserURL);

 [browsers addObject:[(__bridge NSURL *)browserURL path]];
 ...
 }
 ...
 return browsers;
}

Listing 10-14: Obtaining a list of installed browsers using Launch Services APIs

The code invokes the LSCopyAllHandlersForURLScheme API with the URL
scheme https 1, which returns an array containing the bundle IDs of
applications capable of handling that scheme. The code then invokes the
LSFindApplicationForInfo API to map each ID to an application path 2, saving
these into an array that it returns to the caller.

In macOS 12, Apple added the URLsForApplicationsToOpenURL: method to
the NSWorkspace class to return all applications capable of opening a speci"ed
URL. Invoking this method with a URL to a web page will return a list of all
installed browsers. For newer versions of macOS, KnockKnock makes use of
this API (Listing 10-15).

#define PRODUCT_URL @"https://objective-see.org/products/knockknock.html"

NSMutableArray* browsers = [NSMutableArray array];
if(@available(macOS 12.0, *)) {
 for(NSURL* browser in [NSWorkspace.sharedWorkspace URLsForApplicationsToOpenURL:
 [NSURL URLWithString:PRODUCT_URL]]) {
 [browsers addObject:browser.path];
 }
}

Listing 10-15: Obtaining a list of installed browsers with the URLsForApplicationsToOpenURL: method

You can "nd the code to enumerate Safari browser extensions in the
scanExtensionsSafari: method of KnockKnock’s browser extension plug-in.
In Listing 10-16, the code invokes this method with Safari’s location, found
using the previous code.

244!!!Chapter 10

NSArray* installedBrowsers = [self getInstalledBrowsers];

for(NSString* installedBrowser in installedBrowsers) {
 if(NSNotFound != [installedBrowser rangeOfString:@"Safari.app"].location) {
 [self scanExtensionsSafari:installedBrowser];
 }
 ...
}

Listing 10-16: Invoking Safari-specific logic to enumerate its extensions

The location of Safari’s browser extensions has changed over the years;
you could "nd them in the ~/Library/Safari/Extensions directory until Apple
decided to move them into the keychain. Older versions of KnockKnock
tried to keep up with these changes, but now, it uses a simpler method:
executing the macOS pluginkit utility (Listing 10-17).

for(NSString* match in @[@"com.apple.Safari.extension", @"com.apple.Safari.content-blocker"]) {
 NSData* taskOutput = execTask(PLUGIN_KIT, @[@"-mAvv", @"-p", match]);
 ...
}

Listing 10-17: Enumerating installed Safari extensions

The -m argument "nds all plug-ins that match the search criteria speci"ed
in the -p argument; the -A argument returns all versions of the installed plug-
ins, rather than just the highest version; and -vv returns verbose output that
includes the display name and parent bundle. For the -p argument, we "rst
use com.apple.Safari.extension, then com.apple.Safari.content-blocker. This
ensures that we enumerate both traditional extensions and content blocker
extensions.

We execute pluginkit in a helper function we’ve named execTask (dis-
cussed in Chapter 1), which simply launches the speci"ed program along
with any speci"ed arguments and returns the output to the caller. Try run-
ning pluginkit yourself to enumerate the Safari extensions installed on your
Mac. In the following output, you can see that I’ve installed an ad blocker:

% pluginkit -mAvv -p com.apple.Safari.extension
...
org.adblockplus.adblockplussafarimac.AdblockPlusSafariToolbar
Path = /Applications/Adblock Plus.app/Contents/PlugIns/Adblock Plus Toolbar.appex
UUID = 87C62A05-974F-4E6C-81EE-304D4548DA60
SDK = com.apple.Safari.extension
Parent Bundle = /Applications/Adblock Plus.app
Display Name = ABP Control Panel
Short Name = $(PRODUCT_NAME)
Parent Name = Adblock Plus
Platform = macOS

Leveraging this external binary has the downside of introducing
a dependency and the need to parse its output, but it’s still the most

Persistence Enumerator!!!245

reliable option. There are many ways to parse any output. In Listing 10-18,
KnockKnock takes the approach of extracting each extension’s name, path,
and UUID.

-(void)parseSafariExtensions:(NSData*)extensions browserPath:(NSString*)browserPath {
 NSMutableDictionary* extensionInfo = [NSMutableDictionary dictionary];

 extensionInfo[KEY_RESULT_PLUGIN] = self;
 extensionInfo[KEY_EXTENSION_BROWSER] = browserPath;

 for(NSString* line in
 [[[NSString alloc] initWithData:extensions encoding:NSUTF8StringEncoding]
 componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]]) {
 NSArray* components = [[line stringByTrimmingCharactersInSet:
 [NSCharacterSet whitespaceCharacterSet]] componentsSeparatedByString:@"="];
 // key and value set to first and last component

 if(YES == [key isEqualToString:@"Display Name"]) {
 extensionInfo[KEY_RESULT_NAME] = value;
 } else if(YES == [key isEqualToString:@"Path"]) {
 extensionInfo[KEY_RESULT_PATH] = value;
 } else if(YES == [key isEqualToString:@"UUID"]) {
 extensionInfo[KEY_EXTENSION_ID] = value;
 }
 ...
 }
}

Listing 10-18: Parsing output containing installed Safari extensions

The parsing code separates the output line by line, then splits each
line into key-value pairs using an equal sign (=) as a delimiter. This will, for
example, split the line Path = /Applications/Adblock Plus.app/Contents/PlugIns/
Adblock Plus Toolbar.appex into the key Path and a value containing the path
to the installed ad blocker extension. The code then extracts key-value
pairs of interest, such as the path, name, and UUID.

Using the path to the extension, we load its Info.plist "le and extract
a description of the extension from the NSHumanReadableDescription key
(Listing#10-19).

details = [NSDictionary dictionaryWithContentsOfFile:
[NSString stringWithFormat:@"%@/Contents/Info.plist",
extensionInfo[KEY_RESULT_PATH]]][@"NSHumanReadableDescription"];

extensionInfo[KEY_EXTENSION_DETAILS] = details;

Extension* extensionObj = [[Extension alloc] initWithParams:extensionInfo];

Listing 10-19: Initializing an Extension object for each extension

Finally, we create a KnockKnock browser Extension item object with the
collected extension metadata.

246!!!Chapter 10

Dynamic Library Insertion
A malware sample known as Flashback shattered the notion that Apple’s
operating system was immune to malware.6 Flashback exploited an unpatched
vulnerability capable of automatically infecting users who browsed to a
malicious website. Discovered in 2012, it amassed more than half a million
victims, making it the most successful Mac malware at the time.

Flashback also persisted in a novel and stealthy manner. On an infected
system, the malware gained user-assisted persistence by subverting Safari’s
Info.plist "le and inserting the following dictionary under a key named
LSEnvironment:

<key>LSEnvironment</key>
<dict>
 <key>DYLD_INSERT_LIBRARIES</key>
 <string>/Applications/Safari.app/Contents/Resources/UnHackMeBuild</string>
</dict>
...

The dictionary’s DYLD_INSERT_LIBRARIES key contains a string pointing to
the malicious library UnHackMeBuild. Safari will load this library into the
browser when launched, where the malware could stealthily execute.

Today, Apple has mostly mitigated dylib insertions via the DYLD_INSERT
_LIBRARIES environment variable and other approaches. The dynamic loader
now ignores these variables in a wide range of cases, such as for platform
binaries or for applications compiled with the hardened runtime.7 However,
programs supporting third-party plug-ins, especially on older versions of
macOS, may still be at risk.

As such, KnockKnock contains a plug-in to detect this type of subver-
sion. It scans launch items and applications, checking for the presence of
a DYLD_INSERT_LIBRARIES entry. For launch items, this entry lives under the
EnvironmentVariables key in their property list "le, and for applications, you
can "nd it under a key named LSEnvironment in the app’s Info.plist "le, as we
saw with Flashback. Because legitimate items rarely make use of persistent
DYLD_INSERT_LIBRARIES insertions, you should closely examine any that you
uncover.

Other plug-ins require a similar list of all launch items and applica-
tions, so KnockKnock produces this list in a global enumerator. Let’s brie!y
look at how KnockKnock tackles such enumeration, focusing on the case
of#installed apps, as there are multiple ways to list these items on a Mac.
The least recommended is to manually enumerate bundles found in the com-
mon application directories (such as /Applications), as you’d have to take
into account subdirectories such as /Applications/Utilities/, as well as user-
speci"c applications. Plus, applications could be installed in other locations.

A Stack Over!ow post suggests better options.8 These include leverag-
ing the lsregister utility to list all applications that have been registered
with Launch Services, using the mdfind utility or related Spotlight APIs
to list all applications indexed by macOS, or making use of the macOS

Persistence Enumerator!!!247

system_profiler utility to obtain a list of applications known to the operating
system’s software con"guration.

KnockKnock opts for the system_profiler approach. The tool can output
XML or JSON, which is easy to programmatically ingest and parse. Here
is an example of XML output, along with the metadata for an instance of
KnockKnock installed on my computer:

% system_profiler SPApplicationsDataType -xml
<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<array>
 <dict>
 ...
 <key>_items</key>
 <array>
 <dict>
 <key>_name</key>
 <string>KnockKnock</string>
 <key>arch_kind</key>
 <string>arch_arm_i64</string>
 ...
 <key>path</key>
 <string>/Applications/KnockKnock.app</string>
 <key>signed_by</key>
 <array>
 <string>Developer ID Application: Objective-See, LLC (VBG97UB4TA)</string>
 <string>Developer ID Certification Authority</string>
 <string>Apple Root CA</string>
 </array>
 <key>version</key>
 <string>2.5.0</string>
 </dict>
 ...

KnockKnock executes system_profiler via the execTask helper function
discussed earlier in this chapter (Listing 10-20).

-(void)enumerateApplications {
 NSData* taskOutput = execTask(SYSTEM_PROFILER, @[@"SPApplicationsDataType", @"-xml"]); 1

 NSArray* serializedOutput =
 [NSPropertyListSerialization propertyListWithData:taskOutput
 options:kNilOptions format:NULL error:NULL]; 2

 self.applications = serializedOutput[0][@"_items"]; 3
}

Listing 10-20: Installed applications enumerated via system_profiler

Once this helper function returns 1, KnockKnock serializes the XML
output into an Objective-C object 2, then saves the list of applications found
under the _items key into an instance variable aptly named applications 3.

248!!!Chapter 10

Now that KnockKnock’s global enumerator has obtained a list of appli-
cations (and launch items, although I didn’t show this logic here), the dylib
insertion plug-in can scan each, looking for the addition of the DYLD_INSERT
_LIBRARIES environment variable. Listing 10-21 shows this implementation in
a method called scanApplications.

-(void)scanApplications {
 ...
 for(NSDictionary* installedApp in sharedItemEnumerator.applications) { 1
 NSBundle* appBundle = [NSBundle bundleWithPath:installedApp[@"path"]]; 2
 NSURL* appPlist = appBundle.infoDictionary[@"CFBundleInfoPlistURL"]; 3
 NSDictionary* enviroVars = appBundle.infoDictionary[@"LSEnvironment"]; 4

 if((nil == enviroVars) ||
 (nil == enviroVars[@"DYLD_INSERT_LIBRARIES"])) {
 continue;
 }

 NSString* dylibPath = enviroVars[@"DYLD_INSERT_LIBRARIES"]; 5

 File* fileObj = [[File alloc] initWithParams:
 @{KEY_RESULT_PLUGIN:self, KEY_RESULT_PATH:dylibPath, KEY_RESULT_PLIST:appPlist.path}];

 [super processItem:fileObj];
 }
}

Listing 10-21: Enumerating applications containing an inserted environment variable

The code iterates over all apps found by the global enumerator 1.
For each, it uses the application’s path to load the application’s bundle 2,
which has useful metadata about the application. This includes the con-
tents of the app’s Info.plist "le, which we can access through the bundle
object’s infoDictionary property. After extracting the path to the Info.plist
"le 3, it uses the key LSEnvironment to extract the dictionary containing
speci"c environment variables 4. Of course, most apps won’t set any envi-
ronment variables, so the code skips these. However, for those that have the
DYLD_INSERT_LIBRARIES key set, the code extracts its value: a path to the library
inserted each time the application is run 5. In Flashback, which subverted
Safari, recall that the key-value pair looks like this:

<key>DYLD_INSERT_LIBRARIES</key>
<string>/Applications/Safari.app/Contents/Resources/UnHackMeBuild</string>

Finally, the code in the plug-in creates and processes a File item object
representing the inserted library, saving it to the list of persistent items uncov-
ered by KnockKnock to then print to the terminal or display in the UI.

Persistence Enumerator!!!249

Dynamic Library Proxying and Hijacking
The last plug-in I’ll cover in this chapter detects two other persistence
mechanisms that make use of dynamic libraries. Dylib proxying replaces a
library on which a target process depends with a malicious library. Whenever
the target application starts, the malicious dynamic library loads and runs
as well. To keep the application from losing legitimate functionality, it prox-
ies requests to and from the original library.9

Closely related to dylib proxying is dylib hijacking, which exploits the fact
that the loader may look for dependencies in multiple locations. Malware
could take advantage of this behavior by tricking the loader into using a
malicious dependency instead of a legitimate one. Although malware doesn’t
commonly abuse this technique, the post-exploitation agent EmPyre supports
it as a persistence mechanism.10 Dynamic libraries that perform such hijack-
ing also proxy requests to keep from breaking legitimate functionality.

To detect either technique, KnockKnock generates a list of dynamic
libraries, then checks each for an LC_REEXPORT_DYLIB load command that loads
and proxies requests to the original library. While this load command is
legitimate, benign libraries rarely use it, so we should closely examine any
that do.

Unfortunately, there isn’t a simple way to list all dynamic libraries
installed on a macOS system, so KnockKnock focuses on those that are
currently open or loaded by running processes. This approach isn’t as
 comprehensive as a scan of the entire system, but then again, any persisted
malware is probably running somewhere.

To build a list of loaded libraries, KnockKnock runs the lsof utility to
list all open "les on the system, then "lters out everything but executables.
If a dynamic library has been loaded somewhere, there should be an open
"le handle to it, which lsof can enumerate.

While getting a list of open "les is fairly simple, determining whether
a "le is executable isn’t as easy as you might expect. You can’t just look for
"les whose extension is .dylib because that list wouldn’t include frameworks,
which are technically libraries but don’t normally end in .dylib. For example,
take a look at the Electron framework. The file command reports that it is
indeed a dynamic library, though its extension isn’t .dylib:

% file "/Applications/Signal.app/Contents/Frameworks/Electron
Framework.framework/Electron Framework"
Mach-O 64-bit dynamically linked shared library arm64

Another strategy might be to check which of the open "les are binaries
by checking the "le’s executable bit, but this would include scripts and
other random "les on macOS, such as certain archives (which, as we can
see here, have the executable bit, x, set):

% ls -l /System/Library/PrivateFrameworks/GPUCompiler.framework/Versions/
32023/Libraries/lib/clang/32023.26/lib/darwin/libair_rt_iosmac.rtlib
-rwxr-xr-x 1 root wheel 140328 Oct 19 21:35

250!!!Chapter 10

% file /System/Library/PrivateFrameworks/GPUCompiler.framework/Versions/
32023/Libraries/lib/clang/32023.26/lib/darwin/libair_rt_iosmac.rtlib
current ar archive

While you could manually parse each "le, looking for a universal or
Mach-O magic value, it turns out an Apple-provided API can do this for
you. The relatively unknown CFBundleCopyExecutableArchitecturesForURL API
extracts the executable architecture of a "le, returning NULL or an empty
array for nonbinary "les.11 KnockKnock, which makes use of this API, also
checks for binaries of supported architectures (Listing 10-22).

BOOL isBinary(NSString* file) {
 static dispatch_once_t once;
 static NSMutableArray* supportedArchitectures = nil;

 dispatch_once(&once, ^ {
 supportedArchitectures = 1
 [@[[NSNumber numberWithInt:kCFBundleExecutableArchitectureI386],
 [NSNumber numberWithInt:kCFBundleExecutableArchitectureX86_64]] mutableCopy];

 if(@available(macOS 11, *)) { 2
 [supportedArchitectures addObject:
 [NSNumber numberWithInt:kCFBundleExecutableArchitectureARM64]];
 }
 });

 CFArrayRef architectures = CFBundleCopyExecutableArchitecturesForURL(3
 (__bridge CFURLRef)[NSURL fileURLWithPath:file]);

 NSNumber* matchedArchitecture = [(__bridge NSArray*)architectures
 firstObjectCommonWithArray:supportedArchitectures]; 4
 ...
 return nil != matchedArchitecture;
}

Listing 10-22: Determining whether an item is a binary

The isBinary function builds an array of architectures with values for
both 32 and 64 Intel in a dispatch_once to ensure that the initialization only
occurs once, as we’ll invoke this function for every "le any process has
open#1. Also, the code makes use of the @available Objective-C keyword to
only add the ARM64 architecture on versions of macOS that support it 2.

Next, we extract the executable architecture of the passed-in "le 3,
using the firstObjectCommonWithArray: method to check for any of the sup-
ported architectures 4. If we "nd them, we can be sure that the open "le is
indeed a binary capable of executing on the macOS system. We add these
binaries to a list of dynamic libraries that KnockKnock will shortly check
for proxying capabilities.

KnockKnock also enumerates all running processes to extract the
dependencies of the process’s main binary. Each of these dependencies is
added to the list of libraries to check (Listing 10-23).

Persistence Enumerator!!!251

-(NSMutableArray*)enumLinkedDylibs:(NSArray*)runningProcs {
 NSMutableArray* dylibs = [NSMutableArray array];

 for(NSString* runningProc in runningProcs) { 1
 MachO* machoParser = [[MachO alloc] init]; 2
 [machoParser parse:runningProc classify:NO];

 [dylibs addObjectsFromArray:machoParser.binaryInfo[KEY_LC_LOAD_DYLIBS]]; 3
 [dylibs addObjectsFromArray:machoParser.binaryInfo[KEY_LC_LOAD_WEAK_DYLIBS]];
 }
 ...
 return [[NSSet setWithArray:dylibs] allObjects]; 4
}

Listing 10-23: Enumerating the dependencies of all running processes

To enumerate all running processes, the plug-in makes use of the proc
_listallpids API discussed in Chapter#1. Then, to extract each process’s
dependencies, it invokes a method named enumLinkedDylibs, which iterates
over each loaded process 1, parses it using a Mach-O class I wrote based
on code in Chapter#2 2, and saves both strong and weak dependencies 3.
Finally, the function returns a list containing all dependencies found in all
running processes 4.

Next, we scan the list of libraries enumerated via lsof and via the run-
ning processes (Listing 10-24).

-(NSMutableArray*)findProxies:(NSMutableArray*)dylibs {
 NSMutableArray* proxies = [NSMutableArray array];

 for(NSString* dylib in dylibs) {
 1 MachO* machoParser = [[MachO alloc] init];
 [machoParser parse:dylib classify:NO];

 2 if(MH_DYLIB != [[machoParser.binaryInfo[KEY_MACHO_HEADERS]
 firstObject][KEY_HEADER_BINARY_TYPE] intValue]) {
 continue;
 }

 3 if([machoParser.binaryInfo[KEY_LC_REEXPORT_DYLIBS] count]) {
 [proxies addObject:dylib];
 }
 }
 return proxies;
}

Listing 10-24: Checking whether a binary is a dynamic library that (likely) performs proxying

For each library to scan, the code snippet parses it via the Mach-O
class 1. Speci"cally, it checks the type of binary, ignoring any that aren’t
explicitly dynamic libraries (identi"ed by the MH_DYLIB type) 2. For dynamic
libraries, it checks and saves the library if it has a load command of type
LC_REEXPORT_DYLIB 3.

252!!!Chapter 10

The method returns a list of any proxy libraries it "nds so KnockKnock
can display them to the user, either in the terminal or in the UI.

Conclusion
Most Mac malware persists, so a tool that can enumerate persistently installed
items can uncover even sophisticated or never-before-seen threats. In this
chapter, we examined KnockKnock, a tool that provides this capability,
leaving persistent Mac malware with almost no hope of remaining unde-
tected. In the next chapter, we’ll explore persistence further and cover a
tool capable of detecting persistent Mac malware in real time.

Notes
 1. See https://learn.microsoft.com/en-us/sysinternals/downloads/autoruns.

 2. See https://web.archive.org/web/20180117193229/https://github.com/synack/
knockknock.

 3. Csaba Fitzl, “Beyond the Good Ol’ LaunchAgents -32- Dock Tile
Plugins,” Theevilbit Blog, September#28, 2023, https://theevilbit.github.io/
beyond/beyond_0032/.

 4. “NSClassFromString(_:),” Apple Developer Documentation, https://
developer.apple.com/documentation/foundation/1395135-nsclassfromstring.

 5. You can read more about programmatic integration with VirusTotal in
the service’s developer documentation at https://docs.virustotal.com/
reference/overview.

 6. Patrick Wardle, “Methods of Malware Persistence on Mac OS X,”
VirusBulletin, September 24, 2014, https://www.virusbulletin.com/uploads/
pdf/conference/vb2014/VB2014-Wardle.pdf.

 7. Patrick Wardle, The Art of Mac Malware: The Guide to Analyzing Malicious
Software, Volume 1 (San Francisco: No Starch Press, 2022), 36.

 8. “Enumerate All Installed Applications on OS X,” Stack Over!ow, https://
stackover!ow.com/questions/15164132/enumerate-all-installed-applications-on
-os-x.

 9. Wardle, The Art of Mac Malware, 1:36–37.

 10. See https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/
osx/CreateHijacker.py.

 11. “CFBundleCopyExecutableArchitecturesForURL,” Apple Developer
Documentation, https://developer.apple.com/documentation/corefoundation/
1537108-cfbundlecopyexecutablearchitectu?language=objc.

https://learn.microsoft.com/en-us/sysinternals/downloads/autoruns
https://web.archive.org/web/20180117193229/https://github.com/synack/knockknock
https://web.archive.org/web/20180117193229/https://github.com/synack/knockknock
https://theevilbit.github.io/beyond/beyond_0032/
https://theevilbit.github.io/beyond/beyond_0032/
https://developer.apple.com/documentation/foundation/1395135-nsclassfromstring
https://developer.apple.com/documentation/foundation/1395135-nsclassfromstring
https://docs.virustotal.com/reference/overview
https://docs.virustotal.com/reference/overview
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://stackoverflow.com/questions/15164132/enumerate-all-installed-applications-on-os-x
https://stackoverflow.com/questions/15164132/enumerate-all-installed-applications-on-os-x
https://stackoverflow.com/questions/15164132/enumerate-all-installed-applications-on-os-x
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py
https://developer.apple.com/documentation/corefoundation/1537108-cfbundlecopyexecutablearchitectu?language=objc
https://developer.apple.com/documentation/corefoundation/1537108-cfbundlecopyexecutablearchitectu?language=objc

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

